Tag: energia eólica

Mercado global de energia eólica: China x resto do Mundo

The Global Wind Market: China Versus the World

July 6, 2016
Sponsored By:

The figures for 2015 wind installations are in, and they show two major trends. First, wind capacity continues to be installed at a major rate globally. Second, there are effectively two wind markets: China and the rest of the world.

In 2015, 63.1 GW of wind power capacity was added globally, a 23.2 percent increase from the 51.2 GW installed in 2014. On a cumulative basis, global wind power capacity grew to 434.1 GW in 2015 from 372.3 GW the prior year. That increase is according to the most recent global installation figures compiled in the annual World Wind Energy Market Update 2016 report published by Navigant Research.

Market Growth Worldwide

Growth occurred in almost every wind market—from the long-established European countries to new markets in Latin America, Asia, Africa, and elsewhere. Combined, North America and Latin America installed 14.5 GW in 2015, representing 23 percent global capacity and overtaking Europe by a percentage point. The U.S. led with 8.5 GW of new wind capacity added in 2015, thanks to a building boom sustained by reinstated tax credits. Brazil followed with the most capacity in the Americas with almost 2.8 GW commissioned. Its reverse auction system to award wind power purchase price contracts has proven effective at supporting gigawatt-level installations on a yearly basis at competitively low contract prices.

[Native Advertisement]Europe represented 22.1 percent of new global capacity, with 13.9 GW in 2015, which was up from 12.1 GW in 2014. Germany saw the greatest increase, driven by major offshore wind capacity additions of 2.4 GW and a rush for developers to install onshore projects before incentives shifted to a more limited system in 2016. Record installations were seen in Poland, followed by substantial new capacity in France, the UK, Turkey, and over a dozen other countries.

The degree to which the Asian markets are driving wind demand—particularly China—cannot be overstated. The combined markets of South and East Asia represented 52.6 percent of global wind power capacity, up from 50.6 percent in 2014. Almost all of this annual record was driven by China, which installed a remarkable 30.2 GW—up from a record 23.3 GW in 2014, which itself was an incredible achievement. However, that development has not improved China’s wind curtailment challenge, which worsened from approximately 9 percent curtailed in 2014 to around 15 percent curtailed in 2015.

China provides its wind developers and wind plant owners feed-in-tariffs (FiTs), which are set prices per kilowatt-hour produced, and China’s FiT prices are set according to wind speed location. China’s huge build in 2015 was partly driven by a minor downward adjustment of the FiT rates beginning Jan. 1, 2016. As a result, wind developers rushed to bring capacity online before the rate adjustment. However, the rate drop is minor, so annual capacity installations above 20 GW are expected again for 2016 and in near-term years.

A Split Market

There is effectively a two-part global wind market splitting China and the rest of the world. The split is not only in total capacity installed in a given year but also in the underlying wind turbine supplier dynamics. China sourced 97 percent of its turbines from 23 Chinese wind turbine OEMs, shutting out all but a few Western turbine OEMs. Conversely, 97 percent of all installations throughout the rest of the world were supplied by over 18 Western and Indian wind turbine companies and almost no Chinese suppliers.

This shows China’s overwhelming preference for its domestic vendors. Markets and developers outside of China have responded in kind by sourcing very few turbines from Chinese suppliers. Expect this dynamic to slowly shift as some of China’s more proven suppliers seek international diversification to offset a Chinese market slowdown and Chinese wind turbine manufacturing overcapacity.

Going Forward

New annual wind power installations in 2016 are projected to decelerate by 16.4 percent to around 52.8 GW. The change is driven primarily by a smaller expected rate of project commissioning in China and Germany.

Germany is expected to drop to an annual wind market with installations between 2.5 GW and 3 GW annually through 2020, with between 500 MW and 800 MW coming from offshore wind. It is worth noting that this smaller German wind market is partly why the German wind turbine OEM Nordex acquired Acciona’s wind turbine division and why Siemens is acquiring Spain-based Gamesa. Both Gamesa and Acciona have been successful at securing geographically diversified international sales in fast-growing markets, while Nordex and Siemens have been less successful and heavily reliant on the German market.

China should see lower installation levels in 2016— around 23 GW due to its FiT payments adjusting downward. However, the broader forecast through 2020 has increased since last year’s Navigant Research forecast due to higher-than-expected installations levels. China has been able to combine its mighty industrial manufacturing capabilities with a permissive permitting environment, supportive wind policies, and other top-down government market drivers to install enormous amounts of wind capacity.

As much as China is often criticized for its coal plant building, the country has committed to wind in a major way. Since 2011, there have been five Chinese government wind power plans approved with the following target annual capacities: 26.8 GW, 25.3 GW, 28 GW, 27.6 GW, and 34 GW. The country’s FiT rates are designed to encourage wind plant development up to these levels. The Chinese Wind Energy Association reported that in 2015 alone more than 43 GW of wind power plants were approved. A total of 116.5 GW is expected to be built between 2016 and the end of 2020, bringing China’s cumulative capacity up to 261.5 GW.

U.S. Tax Policies Enacted through 2020

The U.S. will remain a bright spot in the global wind market—particularly following guidance announced in March from the Internal Revenue Service (IRS), which oversees the tax credit policies that support wind. The Production Tax Credit (PTC) and the more-or-less equivalent value Investment Tax Credit were enacted in late 2015, providing the U.S. wind market what it has been desperate for: long-term market certainty. It enacted the tax credits from 2016 through 2020, gradually decreasing the value over the period—effectively a phase out.

However, guidance from the IRS in March changed what had been a typical two-year construction window to a four-year window and removes a previous guideline that stipulated construction must be continuous in nature. Combined, this will take a lot of pressure off the wind industry so it does not have to build as fast as possible to meet a two-year window.

Wind plants seeking 100 percent PTC value and starting construction in 2016 will have until 2020 to complete the project. Applying the four-year guidance, projects starting in 2017 will receive 80 percent value if completed by 2021, 60 percent value by starting in 2018 and completed by 2022, and 40 percent if starting in 2019 and completed by 2023. The new four-year window means that capacity additions will see less of a short-term spike and more of a smoothed out deployment cycle.

Navigant Research expects the market to peak in 2018 with 10.3 GW installed that year and then taper off to a 2.8 GW annual market by 2020. That low point will gradually recover—driven by wind’s competitive costs—to see a further 17.3 GW installed between 2021 and 2025.

Markets to Watch

Brazil is a market to watch for downside adjustments, as a shaky economy and turmoil in the government have introduced uncertainty in the marketplace. This uncertainty is already reflected in starkly lower participation in the power contract auctions than in previous rounds. The UK is another market to keep an eye on, as the surprise late-June Brexit vote casts uncertainty on that country’s strength as a market leader. Onshore wind has already taken a big hit from a rightward shift in a government unsupportive of wind. All eyes will be watching to see if the UK’s previously strong support for offshore wind wavers.

Barring any major changes to those two markets or any others, Navigant Research expects total additional global installations for the next five years to amount to 271.4 GW of new wind capacity, bringing total cumulative capacity by the end of 2020 to over 705 GW of wind capacity. This cements wind as an essential and valuable part of the world’s energy markets for the foreseeable future.

Lead image credit: ian munroe | Flickr

Investimento global em energia limpa tem recorde de US$329 bi em 2015

No Comments

Investimento global em energia limpa tem recorde de US$329 bi em 2015, diz estudo

A China fez a maior parte dos investimentos em energia limpa em 2015.

Por Nina Chestney/ Reuters  14/01/2016

O investimento em energia limpa ao redor do mundo atingiu um recorde de 329,3 bilhões de dólares em 2015, quando investidores ignoraram a queda nos preços dos combustíveis fósseis e flutuações cambiais e instalaram um volume recorde de capacidade de geração, mostrou um estudo nesta quinta-feira (14).

A China fez a maior parte dos investimentos em energia limpa em 2015, com 110,5 bilhões de dólares, ou 17 por cento a mais que em 2014. Outros mercados emergentes também tiveram grandes avanços, como África do Sul, Chile e México.

O investimento em fontes renováveis de energia, como eólicas e solares, foi 4 por cento superior aos de 2014, que ficaram em 315,9 bilhões de dólares, e representaram quase seis vezes o montante de 2004, disse a Bloomberg New Energy Finance em um relatório.

A capacidade instalada em renováveis foi 30 por cento superior à registrada em 2014, com 64 gigawatts em eólicas e 57 gigawatts em usinas solares fotovoltaicas comissionadas no ano passado.

O aumento aconteceu mesmo com uma queda nos preços do petróleo e do gás natural, com a economia da Europa ainda enfraquecida e com o fortalecimento do dólar, que reduziu o valor de investimentos em outras moedas.

“Esses números são uma resposta impressionante a todos que esperavam que o investimento em energia limpa fosse estagnar com a queda dos preços de petróleo e gás”, disse o presidente do conselho consultivo da Bloomberg New Energy Finance, Michael Liebreich.

“Os dados destacam a cada vez maior competitividade da energia solar e eólica, guiada em parte pelo movimento de muitos países para ampliar a capacidade por leilões reversos ao invés de com tarifas vantajosas, uma mudança que coloca os produtores sob constante pressão de preço”, disse.

 

Mudança de Matriz Energética. – Parte II: Comparação com seguidores – Brasil.

No Comments

Parte II:  Comparação com seguidores.                                                                               Lições para um correspondente desenvolvimento da Mariz Energética no Brasil.

Diferenças fundamentais / Situação em início de 2015:                                              –  A Alemanha partiu de base de suprimento de energia por combustíveis fósseis – carvão, petróleo e gás natural – e aproximadamente 20 % de energia nuclear a ser totalmente reformada.  No Brasil aproximadamente 50% da energia consumida é de origem hídrica, supostamente “limpa”.  Aproximadamente 70% da energia elétrica é gerada em centrais hidrelétricas. E existe um potencial de produção de biocombustíveis para veículos, que pode ser mais bem explorado.  O etanol é misturado à gasolina na ordem de 20% e a grande maioria dos automóveis novos têm tecnologia flex.                                                          –  Hoje, em fim de 2015, a capacidade de geração instalada no Brasil está por volta de 140 GW.  O potencial de energia eólica é estimado da mesma ordem de grandeza.  O potencial de energia solar fotovoltaica supera 300 GW.  O potencial de energia elétrica produzida em cogeração com bagaço de cana é comparável à potência da usina hidrelétrica de Itaipu com 14 GW.  A parcela explorada está por volta de 1,5 GW.                                                         –  No Brasil não existem problemas com o armazenamento de energia eólica e solar temporariamente gerada em excesso, pois o despacho das usinas hidrelétricas pode ser regulado acumulando água nos reservatórios, usualmente com baixos níveis.                        –  No Brasil não existem os problemas de distribuição de energia causados pela calefação durante o inverno.                                                                                                                                   –  Mas no Brasil há e continuará havendo uma agricultura e uma pecuária poluidora de muito maior envergadura.

 —  das circunstâncias (2015):                                                                                                  –  Situação econômica de crise de crescimento com redução do PIB, grande déficit fiscal, nível de desemprego de 10% nas principais zonas urbanas, 60% da população de 210 milhões de habitantes com renda familiar de até três salários mínimos e estimados 40 milhões de pobres com renda de até 1,9 US$/dia.  80% da população – 168 milhões – está urbanizada; dos outros 42 milhões cerca de 15 milhões vivem na Floresta Amazônica, principalmente de extrativismo.   O sistema de educação e de saúde são precários.   O saneamento básico está deficiente.                                                                                                     –  A balança comercial do Brasil tem se mostrado positiva, com as principais exportações sendo minérios e, principalmente, commodities agrários e carnes.  Em 1980 o Brasil produzia 50 milhões de toneladas de grãos e importava feijão; em 2015 chega perto de produzir 200 milhões de toneladas,alcançando a posição de segundo produtor mundial de alimentos.                                                                                                                                                 –  As distâncias no Brasil são longas, sendo este um dos fatores causadores de problemas estruturais logísticos para transportes para a transmissão de energia.                                      –  O Brasil abriga grandes extensões de biomas com grande biodiversidade, em parte ainda mal conhecida:  A floresta Amazônica, a floresta Atlântica e o Cerrado merecem particular destaque.  Da floresta Atlântica restam cerda de 8%, constantemente ameaçados.  Do Cerrado 40% já foi ocupado pela agricultura e pela pecuária, tendo apenas uma parcela de 5% protegidos por lei.  A floresta Amazônica cobria mais de 50% do território nacional; hoje cerca de 20% estão desmatados, o desmatamento progride a taxas de 5.000 km2 por ano, para a conversão em pastos, assim como continua o extrativismo de madeiras.  Esta destruição não traz vantagens para o desenvolvimento econômico e não contribui para a redução da pobreza.                                                                                                 –  Não foram formulados ainda Projetos para o Desenvolvimento Sustentável Regionais, que tratassem coordenadamente o desenvolvimento econômico, no que ficaria inserido a Matriz Energética, o desenvolvimento ambiental e o desenvolvimento social.  Existe um Plano Nacional de Energia, que precisa ser atualizado com finalização de obras de usinas hidrelétricas e longas linhas de transmissão na Região Amazônica.                                           –  Com facilidade o Brasil pode ocupar uma posição de liderança na produção de biocombustíveis em consequência da coprodução com açúcar e energia elétrica.                   –  Tanto a política energética, como os problemas de devastação ambiental, como a continuada presença de pobreza urbana, rural e nas florestas não mobilizam a sociedade (ainda?).  Atualmente as atenções estão presas ao mau desempenho do governo na condução da economia, ao desemprego e aos escândalos de corrupção.

 Consequências básicas:                                                                                                            –  Como a expansão da geração eólica e solar pode ser muito rápida – mais de 3 GW por ano -, as usinas térmicas poderiam ser desativadas em breve, supostamente num prazo de cinco anos, supondo que os sistemas de transmissão e distribuição sejam adequados simultaneamente.  Principalmente a geração fotovoltaica, mas também a geração eólica e a cogeração, estarão situadas próximas, se não nos consumidores, dispensando o investimento em linhas de transmissão de longa distância, com suas perdas de energia.     –  Conjuntamente, a desativação de usinas termelétricas operando com fontes fósseis e incentivos aos biocombustíveis para veículos poderiam reduzir as emissões de GEE do Brasil em cerca de 30%, até 2025.  Então os veículos com acionamentos elétricos já estarão no mercado.                                                                                                                                             –  Com estas perspectivas a oferta de energia no Brasil seria farta.  Os investimentos em usinas hidrelétricas na região amazônica serão absolutamente supérfluos, inclusive as linhas de transmissão aos centros de consumo no Sudeste.  Isto significa que a Política Energética do Brasil – PNE: Plano Nacional de Energia – haveria de ser reformulada.

–  Procedimentos de redução do consumo de energia, ou seja, de aumento de eficiência energética somariam neste cenário positivo, contribuindo com economias na ordem de 20 a 30 GW num prazo de dez anos.

Perspectivas para a redução das emissões de GEE no Brasil: [metas possíveis] Considerando que o cenário de geração e consumo de energia acima descrito configura uma matriz energética “verde” ou “limpa” e                                                               considerando que os desflorestamentos podem e devem ser terminados num prazo de até cinco anos, sendo que contribuem ainda com um terço do total de emissões de GEE, conclui-se que até 2025 as emissões poderão ser reduzidas em dois terços, ou seja, a um terço do nível atual, sem requerer grandes esforços ao erário público e ainda propiciando numerosas oportunidades de trabalho, em todos os níveis da pirâmide social, principalmente nos inferiores, em projetos de recuperação florestal.                                   Este seria o resultado previsível de um Projeto para o Desenvolvimento Sustentável consistente, do qual a configuração da Matriz Energética é uma parte.                                    O terço faltante da redução de emissões de GEE estaria no setor da agricultura e da pecuária além da gestão de resíduos.  Por conta desses poluidores é razoável admitir que restem emissões não mitigáveis, mas talvez sequestráveis por reflorestamentos de recomposição de biomas e industriais. Então 90 % de redução das emissões de 1.500 GtCO2eqiv atuais poderiam ser realizadas até 2035 ou 2040, quer dizer antes da Alemanha alcançar uma meta equivalente.

 

 

Can the world convert to total renewable energy by 2050?

No Comments


Can the world convert to total renewable energy by 2050? Add to …

In 2009, Stanford University engineering professor Mark Jacobson outlined a plan for the world to get all its energy – including transport and heating fuel and electricity – from wind, water and solar resources by 2050.

Considered radical at the time, the model has been fleshed out to provide details for 139 countries and is now seen as far less extreme than it once was. The conversion would not only eliminate most greenhouse gas emissions, Mr. Jacobson says; it would dramatically improve human health and create millions of new jobs. He spoke recently to The Globe and Mail’s Richard Blackwell.

Many people would suggest your proposal is radical and impractical. Is it?

I think it is actually mainstream now. At the Paris conference, they were talking about 100-per-cent renewable energy. In the United States, presidential candidates on the Democratic side have embraced it.

Does that reflect a major change in attitude since you first proposed this in 2009?

It was definitely radical in 2009, and even through 2013 and partly in 2014. Most of this transformation has taken place in people’s minds in the last year. The goal to get to 100-per-cent renewable energy has gathered a huge momentum.

Are you happy with the Paris agreement, which is fairly vague in how it will get to its goals?

It is certainly positive. It is not enough to really address the problem full on. But in terms of what is possible at an international level – trying to get 195 countries to agree – it’s a good start. But each individual country can do a lot more than what that agreement would indicate. Not only can, but should, because it will be to their own benefit.

Is converting transport – cars, planes and other vehicles – the most difficult part?

I think it is easier to transform transportation than anything else, because the turnover time of a vehicle is usually around 15 years. The turnover time of a power plant is between 30 and 40 years. The technology is there for ground transportation right now … although less so for long-distance ships and planes. Aircraft are probably the hardest to change. Everything else we could transform within 15 to 20 years.

What technology would allow the conversion of aircraft to renewables?

We propose cryogenic hydrogen, which is just hydrogen at a low temperature. It was used to propel the space shuttle. It has been tested and it works.

Why do you not have any nuclear power in your models?

It has disadvantages compared to wind, water and solar, and it is not necessary. It might be better than gas or coal, but it still results in nine to 25 times more carbon emissions and air pollution than wind power, per unit of energy generated.

Also, 1.5 per cent of all nuclear reactors built have melted down seriously. And countries have secretly developed weapons under the guise of civilian programs. Then there are radioactive waste issues that are not resolved. And they cost three to four times more right now than wind power and two to three times more than utility-scale solar. There is really no advantage to using it.

Some people oppose hydro power because of the carbon footprint when large projects drown forests. Is that an issue?

We have zero new hydro. It is all existing hydro, so there is no new footprint of any kind.

Isn’t there a physical and environmental footprint from building so much new wind and solar power?

Keep in mind that we are also subtracting all the footprint related to gas, coal, oil and nuclear. There are 2.3 million gas wells spotting the Great Plains of the U.S. and Canada. Well pads, roads and storage facilities take up an area the size of the state of Maine. We would be subtracting that, and all the coal mines, all the oil refineries and the oil wells.

The new physical footprint for everything, worldwide, would be about 0.3 per cent of the world’s land area. The spacing [between wind turbines and solar panels] is another 0.6 per cent of the world. And most of that spacing can be used for agriculture.

What about concerns over materials used in solar panels and wind turbines?

There is an environmental impact for mining [those materials]. But it is a one-time [impact] for each device. With fossil fuels, you need to keep mining continuously. The solar panel footprint is trivial in comparison to the fossil-fuel footprint.

How do you convince countries with big oil and gas industries, like Canada, that this shift is a good idea?

It is [a matter of] information. If people realize that they are going to make and save a lot more money by converting, then the transition would go naturally. If the benefits are clearly laid out, versus the costs, it is a no-brainer for most people.

What about all the people employed in the oil and gas industries who may lose their jobs?

If you convert, you create an additional 22 million jobs worldwide. Sure, you would have to retrain some people, maybe a lot of people in oil and gas, but there are jobs that will be available, both in construction and permanent operation jobs.

Which countries did you find will have the most difficulty to shift to an all-renewable energy economy?

The ones that were the hardest were the smallest – such as Singapore and Gibraltar. They have pretty high populations but not much area, so it is hard for them to produce all their own energy and be energy independent. In Singapore, they will have to transfer some energy from Malaysia. Gibraltar will probably get it from Spain.

Most countries have either a lot of solar or a lot of wind, or a mixture of both. There weren’t any countries that we couldn’t do it in. In some countries, it is more of a political issue because they are war-torn.

Is energy storage going to be a key factor in making this work?

You do need a lot of storage, but it is low-cost storage: pumped hydroelectric storage, concentrated solar power with storage, and heat stored in water and rocks. Combining those with demand response and some hydrogen, which is also a form of storage, will solve the problem.

Is 2050 still a practical date to achieve that goal?

Our goal is to get to 80 per cent by 2030 and 100 per cent by 2050. It is certainly technically and economically practical. Whether it is politically tractable is a different question.

This interview has been edited and condensed.